OPEN ACCESS
Journal of Creativity, Media, and Communication Studies | Vol. 1 No. 2 (2025)
Research Article

Translation of Natural Language to Source Code in the
Case of Repetition in Pascal Language

Adi Yusuf”, Aditya Kusuma Setyanegara?, Muhammad Raafi Febrian Tara3

'Departement of Informatics Engineering, Faculty of Engineering and Computer Science, Universitas
Komputer Indonesia, Indonesia

*Departement of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University,
Indonesia

3Departement of Islamic Criminal Law, Faculty of Sharia, State Islamic University of Raden Mas Said
Surakarta, Indonesia

Email: ¥ adiyusuf2s@gmail.com, ? adityakusuma36s@gmail.com, ¥ raafi.febriantara@gmail.com

Received: Revised: Accepted: Online:
February 26, 2025 March 20, 2025 April 22, 2025 April 23, 2025
Abstract

Source code in computer science is a set of commands used to solve problems written in languages that can be
understood by computers. Programming languages use concise syntax, and due to this conciseness, they avoid
redundancy and ambiguity. However, these languages are often difficult to learn because they require strict
adherence to specific syntactic rules. One approach to minimize the difficulty for programmers is to allow
program writing using natural language, which is more flexible and easier for humans to understand. Therefore,
this research aims to translate natural language, specifically Indonesian, into Pascal source code. The method
applied is a rule-based method consisting of three stages: preprocessing (case folding and filtering), analysis
(scanning and parsing), and translation. The preprocessing stage removes noise, the analysis stage checks
conformity with the defined grammar, and the translation stage converts Indonesian commands into Pascal
syntax. Testing was conducted using 60 Indonesian command texts across three types of loop structures (for do,
while do, and repeat until). The system achieved an accuracy of approximately 95%. The results show that the
rule-based approach is effective in translating repetitive structures. However, improvements to the grammar and
parsing rules are recommended to address translation errors and further enhance system accuracy.

Keywords: Natural Language Processing, Pascal Language, Programming Languages, Source Code, Translation

1. Introduction

Machine translation is the ability of computers to understand human language and translate it
into other languages (Budiharto & Suhartono, 2014). To be able to respond to a language in the form of
text and then automatically translate it into another language according to human wishes, the
translation machine must implement NLP (Natural Language Processing) or Natural Language
Processing. The translation engine has been implemented in research in the field of NLP like Google
Translate. In the programming language, repetition or loop can be done a number of times or until the
loop stop condition is reached. With repetition, a programmer no longer writes the same code or
process repeatedly. Source code has writing rules that have been determined by the particular
programming language used, to be able to reduce the difficulty of programmers in writing programs
without having to understand in detail the rules of writing from certain programming languages is to
do program writing in natural languages, because of their flexibility and ease of use by humans,
reducing the need for extensive training, and possibly using speech recognizers for input data
(Biermann et al., 1983).

3

Copyright: © 2025 by the authors. 97
This is an open access article PROJURNAL

distributed under the terms and conditions of the CC BY 4.0. Assist - Resiet - persiat


https://ojs.projurnal.com/index.php/cg
mailto:adiyusuf25@gmail.com
mailto:adityakusuma365@gmail.com
mailto:raafi.febriantara@gmail.com

Adi Yusuf et al

The study of translating natural language into source code is not a new study but has been
previously studied (Biermann et al., 1983; Dirgahayu et al., 2017), research conducted by A. Biermann,
B. Ballard and A. Sigmon translates natural language into source code. In the research of A. Biermann,
B. Ballard and A. Sigmon have been able to detect 81% of English sentences correctly and the overall
success rate is 73.9% (Biermann et al., 1983). And research conducted by Dirgahayu, Huda, Zukhri, and
Ratnasari (Dirgahayu et al., 2017), can handle cases of collision, branching, and repetition. It's just that
the research still uses input text with the pseudocode format in Indonesian (Dirgahayu et al., 2017). The
similar research conducted by Kohar (2019) is the translation of natural language which is converted
into the Pascal programming language. However, in that study, Kohar (2019) it was only able to handle
the case of the buildup and could not yet handle the case of repetition. Therefore, this research will
build a translation system from natural language in Indonesian to source code.

Based on the description above, this researcher will add complexity to the grammar both in
Indonesian and in the programming language and add translation features to be able to solve problems
in previous studies that have not been handled by previous studies (Kohar, 2019). The significance of
this research lies in its contribution to improving code generation systems from natural language,
especially in Bahasa Indonesia, by making programming more accessible and supporting a wider range
of cases. This advancement is expected to aid novice programmers and open opportunities for further
development of educational tools and voice-assisted coding systems.

2. Literature Review

2.1. Natural Language Processing
Natural language processing is part of Al (Artificial Intelligence). Natural language processing

examines communication between humans and computers with natural language intermediaries that
humans have. In doing that, natural language sent to a computer must be processed first so that it can
be understood by the computer (Budiharto & Suhartono, 2014). One of the challenges in natural
language processing is the choice of meanings of words that have more than one meaning, such as the
word 'critical’, the word 'critical' can mean 'roof' and can also mean 'critical’ according to the sentence
form (Desiani & Arhami, 2006). Research that can handle cases of words that have more than one
meaning is by means of the Part of Speech Tagger, as conducted by (Purnamasari & Suwardi, 2018).
System answering questions, summarization, speech recognition, document classification, and
machine translation are research in the field of natural language processing. Machine translation is
research that aims to make the computer understand the natural language entered and translate it into
another desired language.

2.2. Pascal Programming Language
Pascal programming language is a high-level programming language and its orientation is on all

purposes (Kadir, 1991). Pascal programming language is widely used in the world of education. Because
Pascal is relatively easy to read and the notation is similar to standard English (Rinaldi, 2011).

2.3. Scanning
Scanning is the stage of sorting input text into tokens based on the class. In this study, the

scanning phase receives word stream input which then sorts the input text into lexic units or tokens
(Utdirartatmo, 2005). The scanner also reads the input characters one by one to determine the primitive
word units, or "tokens", for each command. Then the scanning tokens will become input data at the
Parsing stage.

III 08

PROJURNAL

Assist - Resist - Persist



Journal of Creativity, Media, and Communication Studies

2.4. Parsing

Parsing is the process of determining how a terminal string can be generated by a grammar (Aho

et al., 2007). The parsing method is divided into two namely top down and bottom up.

3. Methods

In this study, a system built using the rule-base method is determined based on the case raised.

3.1. System Overview

In this study, the system built will be able to translate Indonesian into source code in Pascal. The

system built has three main processes, namely preprocessing (case folding and filtering), the analysis

process (scanning and parsing), and the last is the translation process.

At the preprocessing stage, the system performs case folding to convert text to lowercase,

followed by filtering to remove unnecessary characters, leaving only valid input such as letters,

numbers, punctuation, and spaces.

Next, in the analysis stage, the scanning process breaks the input into tokens and categorizes

them using a grammar dictionary. These tokens are then passed to the parsing process, which checks

whether the token structure matches the defined grammar rules.

In the final translation stage, matched tokens are converted into Pascal source code based on

rule-based mappings, producing output that corresponds to the original Indonesian commands.

Case Folding

A

/

Filtering

A

/

\ /

Scanning

A

/

4

Grammar dictionary NL,

grammar SC, and token

Parsing

category.

A

/

Y

Transl

lation

Natural

Language

Natural
Language in

lowercase

Natural
Language in
lowercase
(@-2).(.).(+.-./.).
(.),(0-9),(space)

Categorized

word tokens

Alist of tokens

that match

Source code

Figure 1. Entire system diagram blocks

99

Wl

PROJURNAL

Assist - Resist - Persist


https://ojs.projurnal.com/index.php/cg

Adi Yusuf et al

4. Results and Discussion

In this chapter we will discuss the research conducted and the results obtained from this study.
4.1. Problem Analysis
The problem in previous research conducted by Kohar (2019), has not been able to deal with

repetitive translation and at the scanning stage has not been able to classify two or more words so that
more than one word will automatically be classified as a string.

Table 1. Table Prior Research Processes

No Kohar (2019) Research Dirgahayu et al. (2018) Research
1 Case folding Case folding

2 Filtering

3 Scanning Pseudocode Translation

4 Parsing Validation

5 Translation Source code Translation

In this research, system will translate natural language in Indonesian into a source code in Pascal
will be built. The system built focuses on translating the repetition of the Pascal programming language.
Iterations in Pascal language are divided into several types, namely: for to do, for down to do, while do,
repeat until, nested repetition.

4.2. Data Input Analysis

In this study, input data that can be received by the system in the form of natural language text
in Indonesian that is structured in solving problems, follows the rules of writing Pascal language that
starts from making program titles, variable declarations, and program content sections. Examples of
input data are shown in Table 2.

Table 2. Input Data Sample

No Data Input
1 Buat aplikasi looping. Buat variabel i dengan tipe data bilangan bulat. selama i lebih kecil dari 10 lakukan
Tampilkan “benar” dan i tambah 1 masukkan ke i.

2 Buat program hitung. buat variabel x dengan tipe data bilangan bulat. ulangi tampilkan menulias bahasa
pemrograman pertama lalu x ditambahkan 1 dimasukkan ke x.

4.3. Preprocessing Process

Preprocessing aims to get clean input data so that it is ready to be used in the analysis and
translation process. Preprocessing in this study consists of three stages, namely case folding and
filtering.

Wl

PROJURNAL

Assist - Resist - Persist

100



Journal of Creativity, Media, and Communication Studies

Natural

Language

Case Folding

Natural

Language in

V lowercase

Filtering

Natural

Language in

lowercase

@-2).0).(+-17),
(:).(0-9).(space)

Figure 2. Block Preprocessing Process Diagram

4.3.1. Case folding

In this study all input data is converted to lowercase letters. Data input which has become
lowercase letters will be used for the filtering process.

Table 3. Example of Case Folding
Before
Selama i lebih kecil dari 10 lakukan Tampilkan “benar” dan i tambah 1 masukkan ke i.
After
selama i lebih kecil dari 10 lakukan tampilkan “benar” dan i tambah 1 masukkan ke i.

4.3.2.Filter
In this study the only characters allowed to enter the analysis stage are the characters a-z, 0-9, ‘_,
-, comma ('), dot (*.’), And space.

Table 4. Example of Filtering
Before
selama i lebih kecil dari 10 lakukan tampilkan “benar” dan i tambah 1 masukkan ke i.
After
selama i lebih kecil dari 10 lakukan tampilkan benar dan i tambah 1 masukkan ke i.

4.4. Scanning Process
Scanning is the process by which the system reads the input characters one by one to determine

the word token unit.

Categorized

Word array word tokens

» Token ification >

Token category
dictionary

Figure 3. Block Scanning Process Diagram

101 E‘I

PROJURNAL

Assist - Resist - Persist



https://ojs.projurnal.com/index.php/cg

Adi Yusuf et al

In Figure 3, it has two stages, namely checking the word class and checking the next word class.
Word class checking is looking for the first token class. If the first token class is detected, then the token
class will be saved. Then the first word is combined with the next word. If the combination of the first
word and the next word results in a new token class, then the new token class will be saved, but if not,
the old token class will be saved.

Table 5. Token List and Class

No Data Input

Arithmetic Operator tambah, ditambah, tambahkan, ditambahkan, kurang, kurangi, dikurangi, kali,
dikali, kalikan, dikalikan, bagi, dibagi, dikurang.

Keyword program, aplikasi, variabel, var, peubah, tipe, integer, string, masuk ke, masukan,
dimasukan, isi, isikan, diisikan, tampil, tampilkan, ditampilkan, baca.

Additional Token buat, buatkan, buatlah, kemudian, lalu, dan, dengan, data, nilai, nilainya, hasil,
hasilnya, datanya, desimal, dari.

IdentApp [a..z, 0..9, ‘]

IdentVar la..z, 0..9, ‘]

String la..z, 0..9, ‘]

Number [0..9, ]

Delimiter A

In this study, the addition of tokens was carried out in order to handle previous research
problems.

Table 6. List of Additional Tokens
No Data Input
Arithmetic Operator sisa bagi, hasil bagi, sisa bagi, lebih besar, lebih kecil, lebih besar sama dengan, lebih
kecil sama dengan, bernilai sama, tidak sama dengan, sampai, lebih dari, lebih besar
dari, kurang dari, lebih kecil dari, lebih dari sama dengan, lebih besar sama dengan
dari, kurang dari sama dengan, lebih kecil sama dengan dari.

Keyword selama, maka, untuk, bernilai, pada, ketika, ulangi, sehingga, lakukan, sama dengan,
ulang, kerjakan, bilangan bulat.
Additional Token perulangan, iterasi, terus, selanjutnya, berikutnya.

Examples of scanning results from the filtering data contained in Table 4 can be seen in Table 7.

Table 7. Example of Scanning

Before

selama i lebih kecil dari 10 lakukan tampilkan “benar” dan i tambah 1 masukkan ke i.
After

Token Class

selama Keyword

i IdentVar

lebih kecil dari ArithmeticOperator

10 Number

lakukan Keyword

tampilkan Keyword

Benar String

dan AdditionalToken

i IdentVar

tambah ArithmeticOperator

1 Number

masukkan Keyword

ﬁl 102

PROJURNAL

Assist - Resist - Persist



Journal of Creativity, Media, and Communication Studies

Ke AdditionalToken
I IdentVar
Delimiter

4.5. Parsing Process
The parsing stage is the stage of checking the order in which Indonesian text input appears from

the scanning process.

Token array and Alist of matching
its classes tokens
Token derivation
based on grammar

\/

Grammar dictionary
NL

Figure 4. Block Parsing Process Diagram

In Figure 4, the system will lower the token based on the specified grammar.

Table 8. Example of the parsing

<LOOPING>

<LOOPING_FOR> <LOOPING_WHILE> <LOOPING_REPEAT>

<KEYWORD_WHILE> <EKSPRESI> <LOOP_OPR> <IO_STATEMENT> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama <EKSPRESI> <LOOP_OPR> <IO_STATEMENT> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama <FACTOR> <MATH_OPR> <EKSPRESI_1> <LOOP_OPR> <IO_STATEMENT>
<ORDINARY_CONJUNCTION> <CHANGE_CONDITION>

selama <FACTOR> <MATH_OPR> <FACTOR> <LOOP_OPR> <IO_STATEMENT>
<ORDINARY_CONJUNCTION> <CHANGE_CONDITION>

selama i <MATH_OPR> <FACTOR> <LOOP_OPR> <IO_STATEMENT> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama i lebih besar dari <FACTOR> <LOOP_OPR> <IO_STATEMENT> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama i lebih besar dari 10 <LOOP_OPR> <IO_STATEMENT> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama i lebih besar dari 10 lakukan <IO_STATEMENT> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama i lebih besar dari 10 lakukan <OUTPUT_STATEMENT> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama i lebih besar dari 10 lakukan <KEYWORD_OUTPUT> <EKSPRESI> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama i lebih besar dari 10 lakukan tampilkan <EKSPRESI> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama i lebih besar dari 10 lakukan tampilkan <FACTOR> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama i lebih besar dari 10 lakukan tampilkan <STRING> <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

103 Ijl

PROJURNAL

Assist - Resist - Persist


https://ojs.projurnal.com/index.php/cg

Adi Yusuf et al

selama i lebih besar dari 10 lakukan tampilkan benar <ORDINARY_CONJUNCTION>
<CHANGE_CONDITION>

selama i lebih besar dari 10 lakukan tampilkan benar dan <CHANGE_CONDITION>

selama i lebih besar dari 10 lakukan tampilkan benar dan <IDENT_VAR> <MATH_OPR> <FACTOR>
<INPUT_OPR> <IDENT_VAR>

selama i lebih besar dari 10 lakukan tampilkan benar dan i <MATH_OPR>

<FACTOR> <INPUT_OPR> <IDENT_VAR>

selama i lebih besar dari 10 lakukan tampilkan benar dan i tambah <FACTOR> <INPUT_OPR>
<IDENT_VAR>

selama i lebih besar dari 10 lakukan tampilkan benar dan i tambah <NUMBER> <INPUT_OPR>
<IDENT_VAR>

selama i lebih besar dari 10 lakukan tampilkan benar dan i tambah 1 <INPUT_OPR> <IDENT_VAR>
selama i lebih besar dari 10 lakukan tampilkan benar dan i tambah 1 masukkan ke <IDENT_VAR>
selama i lebih besar dari 10 lakukan tampilkan benar dan i tambah 1 masukkan ke i

4.6. Translation Process
This translation process is the stage of changing the input data into the Pascal programming

language. This translation phase will be carried out when the parsing process is received. The
translation process has five stages, namely the removal of additional tokens, changing tokens, sorting
tokens, syntactic adjustments in the Pascal language, and tidying the code.

Token array and its classes along with parsing results

Removal of
Additional Tokens

Token array and its classes without additional tokens

Token modification

Natural language
grammar dictionary

Token array following Pascal syntax rules

Syntax adjustment
in Pascal language

Token array following Pascal order rules

Parsing

Pascal language
grammar dictionary

Array in Pascal source code

Code formatting

Source code Pascal

Figure 5. Block Translation Process Diagram

Wl

PROJURNAL

Assist - Resist - Persist

104



Journal of Creativity, Media, and Communication Studies

4.6.1. Additional Tokens Removal
This additional token removal step is the stage to remove tokens that will not be used, Tokens

that have the 'AdditionalToken' class will be deleted by the system.

Table 9. Example of Additional Token Removal

Before
Token Class
selama Keyword
i IdentVar
lebih kecil dari ArithmeticOperator
10 Number
lakukan Keyword
tampilkan Keyword
Benar String
dan AdditionalToken
i IdentVar
tambah ArithmeticOperator
1 Number
masukkan Keyword
ke AdditionalToken
i IdentVar
Delimiter
After
Token Class
selama Keyword
i IdentVar
lebih kecil dari ArithmeticOperator
10 Number
lakukan Keyword
tampilkan Keyword
benar String
i IdentVar
tambah ArithmeticOperator
1 Number
masukkan Keyword
i IdentVar
Delimiter

4.6.2. Changing Token
The token change stage is the stage to change tokens other than tokens that have the

AdditionalToken class into the pascal programming language.

Table 10. Example of Token Changing

Before After
selama while
i i
lebih kecil dari <
10 10
lakukan do
tampilkan writeln
benar benar
i i
tambah +
1 1

105 ﬁl

PROJURNAL

Assist - Resist - Persist


https://ojs.projurnal.com/index.php/cg

Adi Yusuf et al

masukkan =
i i

4.6.3. Tokens Position Mapping
The token position mapping stage is the stage of adjusting the order in which tokens appear
according to Pascal rules.

Table 11. Token Position Mapping

Before After
while while
i i
< <
10 10
do do
writeln writeln
benar benar
1 1
" =
1 i
= +
i 1

4.6.4. Syntax Adjustment in Pascal Language
The syntax adjustment stage in Pascal language is the stage to adjust the syntax according to the

) oy € ¢

rules in Pascal language but not in natural language writing, for example ‘begin’, ‘(’, ¥)’, “’,;’," end ".

Table 12. Syntax Adjustments in Pascal Language

Before After

while while
i i
< <
10 10
do do
writeln begin
benar writeln
i (
i benar
N )
1 )

i

i

+

1

end

III 106

PROJURNAL

Assist - Resist - Persist



Journal of Creativity, Media, and Communication Studies

4.6.5. Code Tidying
The code tidiness stage is the stage where tokens that are in accordance with the rules in the
Pascal language will be tidied up so that they are easy to understand.

Table 13. Code Tidying
Before After

while

i

<

10

do
begin
writeln

(

¢

while i <10 do
benar begin

) writeln (‘benar?);
) i=i+1

; end;

4.7. Analysis of Testing Result

Accuracy testing is done by comparing the translation results obtained from the system with the
expected results. Tests are carried out on commands for do, call while do, and repeat until. The test is
carried out on 60 test data which are divided into 3 combinations of orders. The results of translational
testing from Indonesian to source code in Pascal can be seen in Table 14.

Table 14. Example of Accuracy Testing Results
Translation Result

Command Combinations Number of Test Data

Correct False
The ‘for do’ function 20 19 1
The ‘while do’ function 20 19 1
The ‘repeat until’ 20 19 1
function
Total 60 57 3

The overall accuracy achieved by the system is 95%. This high accuracy indicates that the system
is effective in translating Indonesian natural language commands into Pascal source code for loop
structures.

The results show consistent translation performance across all three types of loop commands,
each achieving 95% individual accuracy. This consistency suggests that the grammar rules and parsing
mechanisms implemented in the system are generally robust across different syntactic structures.
However, the small number of errors encountered also highlights specific weaknesses in the system’s
current implementation. Notably, the errors occurred when the parser failed to distinguish between

107 Ijl

PROJURNAL

Assist - Resist - Persist


https://ojs.projurnal.com/index.php/cg

Adi Yusuf et al

decimal values written with a comma (e.g., "2,5") and a list of values, or when it misidentified variables
as string literals.

These findings reinforce the need for improved lexical analysis and semantic understanding in
the system. Enhancing the system's ability to contextually differentiate between variable names and
data types could reduce such misinterpretations.

This study is limited to the translation of loop structures and does not yet address other
programming constructs such as conditional statements, functions, or nested loops. Additionally, the
system’s handling of ambiguous or colloquial expressions in natural language is still limited, which may
affect usability in broader contexts. The use of manually defined rules also restricts the scalability and
flexibility of the system when dealing with more complex or diverse language inputs.

5. Conclusion

Based on the testing that has been conducted, the system successfully translates Indonesian-
language instructions into Pascal source code, particularly in the context of repetition structures. The
model achieved an accuracy of 95%, indicating that the approach is effective and reliable for the
intended use case. This result demonstrates that the use of rule-based translation combined with
syntactic analysis can produce accurate code generation in structured programming languages.

These findings suggest that the proposed system can serve as a foundational tool for assisting
beginners in programming, especially in understanding how natural language instructions are
transformed into actual code. Furthermore, the success of this system opens up opportunities for
expansion into other programming constructs such as conditional statements, functions, or even
object-oriented paradigms.

As a suggestion for future work, it is recommended to enhance the system's capabilities to cover
more diverse programming structures and to support multiple programming languages. Additionally,
integrating machine learning techniques may improve flexibility and reduce reliance on manually
crafted rules.

5.1. Author Contributions
This research was conducted with equal contributions from all authors. The first author was

responsible for developing the translation module into the Pascal programming language, including
algorithm implementation and system testing. The second author played a role in collecting and
analysing the data used in the research, including processing test data and validating results. The third
author was responsible for composing the scientific journal, improving the writing structure, and
making revisions based on feedback from readers and reviewers.

5.2. Conflicts of Interest
The authors declare that there is no conflict of interest in this research. This study was conducted

as a contribution to the development of knowledge in the field of Natural Language Processing (NLP)
and the translation of natural language into source code in Indonesia. The purpose of this research is
purely for academic development and to enhance understanding of automatic translation techniques
in the programming world.

Wl

PROJURNAL

Assist - Resist - Persist

108



Journal of Creativity, Media, and Communication Studies

6. References

Aho, A.V, Lam, M. S,, Sethi, R., & Ullman, J. D. (2007). Compilers: Principles, techniques and tools, 2nd
editio. United States of America: Pearson Education Limited.

Biermann, A. W., Ballard, B. W., & Sigmon, A. H. (1983). An experimental study of natural language
programming. International Journal of Man-Machine Studies, 18(1), 71-87.

Budiharto, W., & Suhartono, D. (2014). Artificial Intelligence Konsep dan Penerapannya. Yogyakarta:
Andi.

Desiani, A., & Arhami, M. (2006). Konsep kecerdasan buatan. Penerbit Andi, Yogyakarta.

Dirgahayu, T., Huda, S. N., Zukhri, Z., & Ratnasari, C. I. (2017). Automatic translation from pseudocode
to source code: A conceptual-metamodel approach. 2017 IEEE International Conference on
Cybernetics and Computational Intelligence (CyberneticsCom), 122-128.

Kadir, A. (1991). Pemrograman Turbo Pascal untuk IBM PC Menggunakan Versi 5.5. Jakarta: Elex Media
Komputindo.

Kohar, M. (2019). Penerjemah Bahasa Alami Dalam Bahasa Indonesia Ke Source Code Dalam Bahasa
Pascal. Universitas Komputer Indonesia.

Purnamasari, K. K., & Suwardi, I. S. (2018). Rule-based Part of Speech Tagger for Indonesian Language.
IOP Conference Series: Materials Science and Engineering, 407(1), 12151.

Rinaldi, M. (2011). Algoritma dan Pemrograman. Bandung: Informatika.

Utdirartatmo, F. (2005). Teknik Kompilasi. Yogyakarta: Graha Ilmu.

109 Ijl

PROJURNAL

Assist - Resist - Persist


https://ojs.projurnal.com/index.php/cg

