Sales Forecasting Using the SARIMA (Seasonal Autoregressive Integrated Moving Average) Method on Staple Rice Seeds of the Inpari 32 HDB Variety at PT ABC Banyuwangi
Main Article Content
Rizka Putri Ramadhani*
PT ABC Banyuwangi faces challenges in meeting the demand for rice seeds, especially for the Inpari 32 HDB variety, due to mismatches between inventory and market demand. This issue affects the availability of seeds that match market needs. To address this problem, this study applies the Seasonal Autoregressive Integrated Moving Average (SARIMA) method to forecast the sales of Inpari 32 HDB rice seeds for the year 2025. Historical sales data is analyzed using the SARIMA model to identify seasonal patterns and generate more accurate demand projections. This approach is expected to provide a clearer picture of future rice seed demand. The analysis results show that the SARIMA model provides fairly accurate forecasts, with a Mean Absolute Percentage Error (MAPE) of 6.1%, demonstrating the model's effectiveness in predicting the demand for Inpari 32 HDB rice seeds. With these findings, the company can make more informed decisions in inventory planning and supply chain management. More accurate projections will help PT ABC ensure seed availability aligns with market demand, thus improving distribution efficiency and reducing the risk of seed shortages in the market.
Anwar, M. M., Nurfadilah, K., & Alwi, W. (2021). Penerapan Metode SARIMA untuk Peramalan Jumlah Pengunjung Wisata Taman Nasional Bantimurung Bulusaraung Maros. Journal of Mathematics: Theory and Applications, 1–7.
Assidiq, A., Hendikawati, P., & Dwidayati, N. (2017). Perbandingan Metode Weighted Fuzzy Time Series, Seasonal ARIMA, dan Holt-Winter’s Exponential Smoothing untuk Meramalkan Data Musiman. UNNES Journal of Mathematics, 6(2), 129–142.
Hyndman, R. J. (2018). Forecasting: principles and practice. OTexts.
Izaati, I. (2017). Analisis Struktur Pasar Benih Padi Di Kabupaten Banyuwangi. Universitas Brawijaya.
Katabba, Y. I. (2021). Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) untuk Memprediksi Jumlah Penumpang Kereta Api di Pulau Sumatera. Matematika.
Muryanto. (2021). Pemodelan Arima Dan Sarima Untuk Peramalan Indeks Harga Konsumen Kota Balikpapan Studi Kasus IHK Kota Balikpapan Bulan Januari 2011-Desember 2020. Bestari: Buletin Statisitik Dan Aplikasi Terkini, 1(2).
Muzaki, F., & Agustina, N. (2024). Peramalan Nilai Tukar Petani Subsektor Tanaman Pangan di Nusa Tenggara Timur Menggunakan Metode SARIMA. Seminar Nasional Official Statistics, 2024(1), 143–152.
Nasirudin, F., Pindianti, M., Said, D. I. S., & Widodo, E. (2022). Peramalan jumlah produksi kopi di jawa timur pada tahun 2020-2021 menggunakan metode seasonal autoregressive integrated moving average (sarima). AGRIUM: Jurnal Ilmu Pertanian, 25(1), 34–43.
Setiawan, R. N. S., & Kusuma, W. (2024). Peramalan Jumlah Produksi Padi Di Nusa Tenggara Barat Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA). Jurnal Agrimansion, 25(1), 106–114.
Suseno, S., & Wibowo, S. (2023). Penerapan Metode ARIMA dan SARIMA Pada Peramalan Penjualan Telur Ayam Pada PT Agromix Lestari Group. Jurnal Teknologi Dan Manajemen Industri Terapan, 2(I), 33–40.
Syntetos, A. A., Babai, M. Z., & Gardner Jr, E. S. (2015). Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping. Journal of Business Research, 68(8), 1746–1752.
Toomey, J. W. (2000). Inventory management: principles, concepts and techniques (Vol. 12). Springer Science & Business Media.
Wiratmoko, H. (2023). Strategi Pengembangan Usaha Benih Padi Menggunakan SWOT dan QSPM di UD. Sri Tanjung, Desa Pondoknongko, Kecamatan Kabat, Kabupaten Banyuwangi. Politeknik Negeri Jember.